Cosmological constraints from Chandra observations of galaxy clusters

Steve Allen, IoA, Cambridge. UK.

```
With R. Schmidt (Potsdam)
A. Fabian (Cambridge)
S. Bridle (Cambridge)
H. Ebeling (Hawaii)
L. van Speybroeck (CfA)
A. Edge (Durham)
```

PROJECT OUTLINE:

Last four years, we have carried out a programme to study most X-ray luminous, dynamically relaxed galaxy clusters identified from ROSAT All-Sky Survey.

Aims: measure mass distributions using Chandra X-ray data and independent gravitational lensing studies \rightarrow improved constraints on cosmological parameters $(\Omega_{\rm m}, \Omega_{\Lambda}, \sigma_8, w \dots)$

THIS TALK (cosmological constraints):

Constraints on $\Omega_{\rm m}$, Ω_{Λ} from the X-ray gas mass fraction, $f_{\rm gas}$, in dynamically relaxed clusters and its apparent redshift dependence.

- precise constraint on $\Omega_{\rm m}$.
- confirmation of SNIa results on dark energy.

Constraints on σ_8 , $\Omega_{\rm m}$ from local X-ray luminosity function (XLF).

Results from combination of Cosmic Microwave Background (WMAPext) and Chandra $f_{gas}(z)$ data.

- combination of data sets breaks degeneracies in each
 - \rightarrow tight constraints on key cosmo. params. (H_0, Ω_q, w) .
- (with XLF data) \rightarrow preference for a non-zero neutrino mass.

X-RAY MASS MEASUREMENTS:

Divide clusters into circular annuli (2D) or spherical shells (3D).

- 1) observed X-ray surface brightness profile
 - 2) deprojected (spectrally-determined) kT profile

+ assump. hydrostatic equilibrium (spherical symmetry) \rightarrow M(r).

In practise, studies of distant clusters require modified approach: Take simple parameterized mass model (NFW: r_s , c) + SB(r) \rightarrow run Monte-Carlo simulations predict kT(r) \rightarrow compare with obs.

Examine grid 100×100 parameter values for each mass model. Evaluate χ^2 for each grid point \rightarrow best-fit model + uncertainties.

LENSING STUDIES:

Weak lensing: $(r \gtrsim 200 h_{50}^{-1} \text{ kpc})$

Results from literature + own programmes underway.

Strong lensing: $(r \leq 200h_{50}^{-1} \text{ kpc})$

Ground based programme complete. HST (WFPC2/ACS) programme underway.

KEY: Combination of independent X-ray plus lensing methods → robust results!

X-RAY + WEAK LENSING:

STRONG LENSING IN MS2137.3-2353:

Excellent agreement between observed and predicted arc configurations, only free parameters background source positions.

Cosmological constraints from the X-ray gas mass fraction in the most luminous, relaxed galaxy clusters

References: White & Frenk (1991). Fabian (1991), White et al. (1993), David et al. (1995), White & Fabian (1995), Evrard (1997), Ettori & Fabian (1999), Allen et al. (2002, 2003), Ettori et al. (2003), Arnaud et al. (2003).

BASIC IDEA: Galaxy clusters are so large that their matter content should provide a fair sample of matter content of Universe.

Chandra + lensing data \rightarrow robust total mass measurements Chandra data \rightarrow (very) precise X-ray gas mass measurements

X-ray gas dominates baryonic mass content of clusters (6-7 times more mass than all stars in galaxies *e.g.* Fukugita *et al.* 1998).

If we define:

$$f_{\rm gas} = \frac{{
m Xray~gas~mass}}{{
m total~mass~in~cluster}} \qquad f_{\rm gal} = 0.19 h^{0.5} f_{\rm gas}$$

Then
$$f_{\text{baryon}} = f_{\text{gal}} + f_{\text{gas}} = f_{\text{gas}} (1 + 0.19 \,\text{h}^{0.5}).$$

Since clusters provide fair sample of Universe, $f_{\text{baryon}} = \Omega_{\text{b}}/\Omega_{\text{m}}$.

$$\Omega_{\rm m} = \frac{\Omega_{\rm b}}{f_{\rm baryon}} = \frac{\Omega_{\rm b}}{f_{\rm gas}(1 + 0.19\,h^{0.5})}$$

So given $f_{\rm gas}$, $\Omega_{\rm b}$ (cosmic nucleosynthesis, CMB) $\to \Omega_{\rm m}$.

CHANDRA RESULTS on $f_{gas}(r)$

 (ΛCDM)

(fig from Allen et al. 2003. Data analysed here has 10 clusters.)

$$f_{\rm gas}(r) \to {\rm approximately\ universal\ value\ at\ } r \sim r_{2500}$$

$$\to {\rm weighted\ mean\ } \bar{f}_{\rm gas}(r_{2500}) = (0.110 \pm 0.003) h_{70}^{-1.5}$$

$$= (0.065 \pm 0.002) h^{-1.5}$$

Given
$$\Omega_b h^2 = 0.0214 \pm 0.0020$$
 (Kirkman *et al.* 2003)
 $h = H_0/100 = 0.72 \pm 0.08$ (Freedman *et al.* 2001)

$$\implies \Omega_{\rm m} = \frac{(0.0214 \pm 0.0020)h^{-0.5}}{(0.065 \pm 0.002)(1 + 0.19 \,h^{0.5})}$$
$$= 0.323 \pm 0.031$$

Indication from simulations that baryonic mass fraction in clusters is slightly lower than mean value for universe as a whole.

$$f_{\rm baryon} = b \frac{\Omega_{\rm b}}{\Omega_{\rm m}}$$

e.g. Eke, Navarro & Frenk (1998)

For $r = 0.25 \, r_{\rm vir}$ (Chandra obs.) $b = 0.83 \pm 0.04$

$$\longrightarrow \Omega_{\rm m} = 0.27 \pm 0.03$$

Apparent variation of f_{gas} with redshift:

When measuring f_{gas} we adopt a reference cosmology. Since $f_{gas} \propto D_A^{1.5}$, this introduces apparent, systematic redshift variations, depending on differences between adopted and underlying cosmology.

If clusters provide a fair sample of matter content of the Universe then we expect $f_{\rm gas}(z)$ - measured within r_{2500} - to be constant.

When adopted cosmology='true' cosmology, expect $f_{gas}(z) = \text{const.}$

Can easily see $f_{\rm gas}(z)$ data favour $\Lambda {\rm CDM}$ over SCDM and that standard $\Lambda {\rm CDM}$ ($\Omega_{\rm m}=0.3, \Omega_{\Lambda}=0.7$) close to 'true' cosmology.

Above figures are for older data of Allen *et al.* 2003. Left SCDM. Right Λ CDM (0.3,0.7). Current data used in analysis reported here contains 10 clusters with z < 0.6. (Allen *et al.*, in preparation.)

To quantify: fit SCDM data with model which accounts for expected apparent variation in $f_{gas}(z)$ data as underlying cosmology is varied $(\Omega_{\rm m}, \Omega_{\Lambda}) \to \text{find cosmology giving best-fit to data}$.

$$f_{\rm gas}^{\rm mod}(z) = \frac{b\,\Omega_{\rm b}}{\left(1 + 0.19\sqrt{h}\right)\Omega_{\rm m}} \left[\frac{h}{0.5} \frac{D_{\rm A}^{\Omega_{\rm m}=1,\Omega_{\Lambda}=0}(z)}{D_{\rm A}^{\Omega_{\rm m},\Omega_{\Lambda}}(z)}\right]^{1.5}$$

$$(\Omega_b h^2 = 0.0214 \pm 0.0020, \quad h = 0.72 \pm 0.08, \quad b = 0.83 \pm 0.04)$$

Best fit:
$$\Omega_{\rm m} = 0.267 \pm 0.034, \quad \Omega_{\Lambda} = 0.78 \pm 0.33$$

Good fit: reduced $\chi^2 \sim 0.6$

(Above figure is for older data. Current data used in analysis here contains 10 clusters. Allen $et\ al.$, in prep.)

Marginalized results on dark energy (ACDM)

Red curve: standard priors

Blue curve: weak priors $h=0.72\pm0.20, b=0.83\pm0.1,$

 $\Omega_{\rm b}h^2 = 0.0214 \pm 0.006$

First direct confirmation of SN1a results, revealing effects of dark energy on a single source population as a function of redshift.

Future Chandra/XMM observations could improve significance of detection to $> 4\sigma$ over next few yrs (targets identified) allowing us to probe dw/dz and test nature of dark energy.

(Allen et al., in prep.)

Comparison with independent constraints $\Omega_{\rm m}$, Ω_{Λ}

Chandra $f_{gas}(z)$ data. 1, 2 and 3σ contours. CMB (COBE + Boomerang'98 + MAXIMA-1; Jaffe *et al.* 2001). Supernovae (Riess *et al.* 1998; Perlmutter *et al.* 1999).

+ also consistent with 2dF + CMB (e.g. Efstathiou et al. 2002, Lahav et al. 2002; Percival et al. 2002, Lewis & Bridle 2002).

Agreement between independent analyses/methods. All results consistent within 1σ statistical uncertainties

$$\Omega_{\rm m} \sim 0.3, \quad \Omega_{\Lambda} \sim 0.7$$

Constraints on $\Omega_{\rm m}$ and σ_8 from the local X-ray luminosity function of the most X-ray luminous galaxy clusters.

References: e.g. Evrard 1989, Henry & Arnuad 1991, Henry et al. 1992, Oukbir & Blanchard 1992, White et al. 1993, Eke et al. 1996, Viana & Liddle 1996, Kitayama & Suto 1997, Borgani et al. 1997, Markevitch 1998

THIS ANALYSIS (Allen, Schmidt, Fabian, Ebeling 2003):

- 1) Local (z < 0.3) X-ray luminosity function (XLF) of clusters from ROSAT All-Sky Survey (RASS): eBCS (north) and REFLEX (south) studies (Ebeling *et al.* 2000; Böhringer *et al.* 2002).
- 2) Mass-luminosity relation from Chandra and ROSAT X-ray observations + weak lensing measurements
- \rightarrow Precise (M_{200}) mass, luminosity measurements for 17 clusters (including both relaxed and dynamically active systems).
- 3) Predicted mass function of clusters from Hubble Volume simulations for Λ CDM (Jenkins *et al.* 2001; Evrard *et al.* 2002).
- 4) Chandra $f_{gas}(z)$ data for dynamically relaxed clusters.

combine \rightarrow constraints on σ_8 and $\Omega_{\rm m}$.

The observed local XLF of galaxy clusters

Compilation of recently published samples (Rosati et al. 2002):

Excellent agreement between independent studies based on ROSAT All-Sky Survey and pointed ROSAT/Einstein observations.

Here, work with XLF from RASS: eBCS (north) and REFLEX (south) studies (Ebeling *et al.* 2000; Böhringer *et al.* 2002).

$$\rightarrow 111 \text{ clusters with } L_{\rm X,0.1-2.4} > 10^{45} \, {\rm erg \, s^{-1}} \quad (h = 0.5 \, \Lambda {\rm CDM})$$

Luminosity cut keeps systematic uncertainties to a minimum. These are clusters for which virial relations are calibrated most precisely.

The observed mass-luminosity relation ($\Delta = 200$)

Masses, M_{200} , measured from Chandra and weak lensing data. 0.1 - 2.4 keV luminosities from pointed ROSAT observations.

Evolution parameter $E(z) = (1+z)\sqrt{(1+z\Omega_{\rm m}+\Omega_{\Lambda}/(1+z)^2-\Omega_{\Lambda})}$ (assume Λ CDM, h=0.5 cosmology to match BCS/REFLEX).

Characterize data using simple power-law model

$$E(z) \left[\frac{M_{200}}{1 \text{ M}_{\odot}} \right] = M_0 \left[\frac{L}{E(z) \, 10^{44} \, \text{erg s}^{-1}} \right]^{\alpha}.$$

$$(M_0 = 2.0 \pm 1.0 \times 10^{14} \,\mathrm{M}_{\odot}, \,\alpha = 0.76 \pm 0.15)$$

Construct model XLF

Combine observed mass-luminosity relation + predicted mass function (Evrard *et al.* 2002) \rightarrow predicted model XLF (σ_8 , Ω_m).

Fit model XLF to observed XLF \rightarrow constraints on σ_8 , $\Omega_{\rm m}$.

Simple χ^2 approach:

Using best-fit M-L relation, we find that model with $\sigma_8 = 0.73$, $\Omega_{\rm m} = 0.25$ provides best fit to the observed XLF ($\chi^2_{\rm min} = 5.1/4$).

Results on σ_8 as a function of $\Omega_{\rm m}$

Use Monte Carlo analysis which accounts for effects of scatter as well as uncertainties in norm and slope of M-L relation.

Flat Λ CDM cosmology:

$$\sigma_8 = (0.508 \pm 0.019) \, \Omega_{\rm m}^{-(0.253 \pm 0.024)}$$

$$\Omega_{\rm m} < 0.34$$

Other studies based on local cluster abundance

Seljak (2002). Local XTF, observed M-T Reiprich & Böhringer (2001). Local XTF, observed M-T Viana et al. (2002). Local XLF . Stacked lensing M-L Bahcall et al. (2002). Optical (SDSS) clusters, mass-richness

Consistent with local XLF, XTF analyses of Schuecker *et al.* (2003), Pierpaoli *et al.* (2003) + study of local baryonic mass function by Voevodkin & Vikhlinin (2003).

Breaking the $\sigma_8 - \Omega_{\rm m}$ degeneracy

The degeneracy between σ_8 and $\Omega_{\rm m}$ from local XLF/XTF studies can be broken by combining with Chandra $f_{\rm gas}(z)$ data.

Include Gaussian priors: $\Omega_{\rm b} \, {\rm h}^2 = 0.0205 \pm 0.0018, \, h = 0.72 \pm 0.08$ $b = 0.83 \pm 0.04, \quad \Omega_{\rm k} = 0.0.$

→ Best-fit and marginalized 68 per cent confidence limits:

$$\sigma_8 = 0.71 \pm 0.04$$

 $\Omega_{\rm m} = 0.27 \pm 0.03$

Cosmological constraints from CMB+ $f_{gas}(z)$ data.

Analyse CMB (WMAP+CBI+ACBAR) data using MCMC method. Importance sample the results folding in $f_{gas}(z)$ constraints.

Use 8 parameter model with free parameters

$\Omega_{ m dm} h^2$	physical dark matter density
$\Omega_{ m b} h^2$	physical baryonic matter density
H_0	Hubble constant
$A_{ m S}$	scalar amplitude
$n_{ m S}$	scalar spectral index
$z_{ m rec}$	redshift of recombination
$\Omega_{ m k}$	spatial curvature
w	quintessence parameter = p/ρ
R	tensor/scalar amplitude ratio
$n_{ m T}$	tensor spectral index
$f_ u$	neutrino mass fraction

Combination of CMB+ $f_{gas}(z)$ data breaks degeneracies present in both data sets

$$f_{\mathrm{gas}}^{\mathrm{mod}}(z) \propto \frac{\Omega_{\mathrm{b}}}{\Omega_{\mathrm{m}}} \left[\frac{h}{0.5} \frac{D_{\mathrm{A}}^{\Omega_{\mathrm{m}}=1,\Omega_{\mathrm{q}}=0}(z)}{D_{\mathrm{A}}^{\Omega_{\mathrm{m}},\Omega_{q}}(z)} \right]^{1.5}$$

e.g. constraints on $\Omega_{\rm m}$, H_0 ($\Omega_{\rm k}$ free, w free)

Black: CMB only Blue: CMB+ $f_{\rm gas}(z)$

$$\Omega_{\rm m} = 0.29^{+0.04}_{-0.03}, \ H_0 = 68 \pm 6 \ {\rm km \, s^{-1} \, Mpc^{-1}}$$

Dark energy density: quintessence models $(\Omega_k, w \text{ free})$

Black: CMB only Blue: CMB+ $f_{gas}(z)$

Marginalized results:

$$\Omega_{\rm m} = 0.29^{+0.04}_{-0.03}, \ \Omega_{\rm q} = 0.73^{+0.03}_{-0.04}$$

(Allen et al., in prep.)

Quintessence parameter $(w \equiv p/\rho)$

Marginalized results:

$$f_{\rm gas}(z) + {\rm CMB} \ (\Omega_{\rm k} \ {\rm free}): \ w = -1.17 \pm 0.26$$

$$f_{\rm gas}(z) + {\rm CMB} \ \ ({\rm flat}) \ : \ w = -1.02^{+0.17}_{-0.31}$$

$$f_{\rm gas}(z) + {\rm BBNS} + {\rm HST} \ ({\rm flat}): \ w = -1.04^{+0.31}_{-0.36}$$

 \longrightarrow results consistent with w = -1 (ACDM)

(Allen et al., in prep.)

Preference for a non-zero neutrino mass

CMB+2dF+ $f_{gas}(z)$ data: Flat geometry, w=-1, allow tensors.

Assuming negligible neutrino mass

$$f_{\nu} = \Omega_{\nu}/\Omega_{\rm m} = 0$$

With neutrino mass as free parameter

$$\rightarrow \Omega_{\nu}/\Omega_{\rm m} = 0.05$$

(Allen, Schmidt & Bridle 2003)

Marginalized constraints on neutrino density

Tentative detection of non-zero species-summed neutrino mass

$$\sum_{i} m_{i} \sim 94 \,\mathrm{eV} \,\Omega_{\nu} h^{2} = 0.56^{+0.30}_{-0.26} \,\mathrm{eV}$$

Given small mass-squared differences from solar and atmospheric neutrino experiments, and assuming 3 active neutrino species (SLAC, LEP) and an absence of massive, sterile neutrinos

 \rightarrow Approximately degenerate neutrino mass.

$$m_{\nu} = 0.19^{+0.10}_{-0.09} \,\text{eV}$$
 (CMB+2dF+ f_{gas} +XLF)
 $m_{\nu} = 0.17^{+0.22}_{-0.05} \,\text{eV}$ (CMB+ f_{gas} +XLF)

Consistent with 2dF team ($\Sigma_i m_i < 2.2 \,\mathrm{eV}$) and marginally with WMAP-team, including Ly- α forest data ($\Sigma_i m_i < 0.71 \,\mathrm{eV}$)

CONCLUSIONS

Chandra + grav. lensing data \rightarrow precise mass measurements for dynamically relaxed clusters. Mass profiles well described by NFW models with parameters (r_s, c) consistent with simulations.

Chandra $f_{\rm gas}(z)$ data for relaxed clusters in combination with other data \rightarrow tight constraint on mean matter density of Universe, $\Omega_{\rm m}$.

$$f_{\rm gas}(z) + {\rm BBN} + {\rm HST} \longrightarrow \Omega_{\rm m} = 0.27 \pm 0.03$$

 $f_{\rm gas}(z) + {\rm CMB} \longrightarrow \Omega_{\rm m} = 0.29^{+0.04}_{-0.03}$

Chandra $f_{gas}(z)$ data \rightarrow direct confirmation of SN1a results on DE and interesting constraints on quintessence.

$$f_{\rm gas}(z)$$
 +weak priors $\longrightarrow \Omega_{\Lambda} = 0.78 \pm 0.33$
 $f_{\rm gas}(z)$ + CMB $\longrightarrow \Omega_q = 0.73^{+0.03}_{-0.04}$
 $\longrightarrow w = -1.17 \pm 0.26$

Local XLF + observed M/L \rightarrow tight constraint on amplitude of mass fluctuations on $8 h^{-1}$ Mpc scales, $\sigma_8 \sim 0.7$ for $\Omega_{\rm m} \sim 0.3$.

Combination of CMB + 2dF + $f_{gas}(z)$ + XLF data \rightarrow preference for a non-zero neutrino mass $\longrightarrow m_{\nu} = 0.19^{+0.10}_{-0.09} \, \text{eV}$.